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Abstract. An earlier calculation of the solution of the time-independent equation for the
diffusion of coagulating particles is modified to take into account the correct dependence of
the Brownian diffusion coefficient on particle size. Explicit analytic results are obtained for
the spatial dependence of the particle number densityN and the volume fraction of particulate
matterφ.

1. Introduction

Most work on the Smoluchowski coagulation equation has been concerned with the time-
dependent spatially homogeneous situation. More recently, however, interest has been
shown in problems exhibiting spatial dependence, and papers dealing with this include van
Dongen (1989, 1990), Oshanin and Burlatsky (1989), Simons (1986, 1987, 1991, 1992),
Simons and Simpson (1988) and Slemrod (1990). In Simons (1992), the problem tackled
was that of calculating the particle number densityN(x) when a steady state had been
attained as a result of primary particles being injected into the system atx = 0 and diffusing
in the positivex direction up tox = ∞, whilst simultaneously coagulating. In order to
complete this calculation without further approximation it was necessary to assume that
both the coagulation kernelP and the diffusion coefficientD were constants, independent
of particle size, and whilst this is known to be a good approximation forP in the case of
coagulation due to Brownian motion (see, for example, Friedlander (1977)), it is, however,
not a good approximation for the correspondingD which is known to exhibit av−1/3

variation, v being the particle volume. For the case of Brownian motion it is, therefore,
clear that this assumption of constantD will give rise to quantitative errors inN(x), but
apart from this there will also exist a basic qualitative error in the approach. This is so
because the constantD assumption implies that in the steady state the volume fraction of
particulate matterφ(x) is a constant, independent ofx, whilst with the truev-dependentD
this will not be the case.

The above comments motivate us to consider, in the present paper, the same physical
situation as that dealt with in Simons (1992), but with the consistent assumption that both
coagulation and diffusion are due to Brownian motion of the particles. The above-mentioned
v dependence ofD then prevents us from carrying through an exact calculation as was done
in Simons (1992). Rather, we follow the approach of Simons (1986, 1987) and Simons
and Simpson (1988) whereby the spectrum of particle sizes is assumed to be that of a
‘self-preserving’ distribution (Friedlander and Wang 1966). This allows us to complete the
calculation and obtain simple analytic forms for bothN(x) andφ(x).
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2. Basic formulation

Let n(v, x, y, z) dv be the number of particles per unit volume of space at position (x, y, z)
whose own volumes lie betweenv andv + dv. We shall suppose that the particles diffuse
and coagulate within the half-spacex > 0 with n(v) being specified and independent ofy

andz on the planex = 0. Thenn will be independent ofy andz for all x, and, following
Friedlander (1977), will satisfy the equation

D(v)
∂2n

∂x2
+

(
∂n

∂t

)
coag

= 0. (1)

Here(∂n/∂t)coag is the rate of change ofn due to coagulation, which is given by(
∂n

∂t

)
coag

= 1
2

∫ v

0
P(u, v − u)n(u)n(v − u) du − n(v)

∫ ∞

0
P(u, v)n(u) du (2)

where P(u, v) is the relevant coagulation kernel. For diffusion and coagulation due to
Brownian motion

D(v) = Av−1/3 (3a)

and

P(u, v) = B(u1/3 + v1/3)(u−1/3 + v−1/3) (3b)

where A = (2/31/2π)2/3(kT /6η) and B = 2kT /3η, T and η being respectively the
temperature and coefficient of viscosity of the gas (Simons 1986). Although equation (1) is
conventionally used to describe the present situation, its derivation requires a little further
consideration. The coagulation term (2) arises physically as the result of the particles
diffusing and indeed its derivation involves the solution of a certain diffusion equation. This
might suggest that for the present situation where there exists a superimposed variation ofn

in the x direction, such variation might effectively modify the coagulation term and hence
necessitate the formulation of a single equation incorporating simultaneously the effects of
diffusion in giving rise to both macroscopic transport and particle coagulation. In fact this
is not necessary, since the diffusion involved in the calculation of the coagulation kernel
occurs at scales of the order of the size of a typical particle, while for the diffusive term
in equation (1) the relevant scale is of the order of the mean interparticle distance. Thus
under normal circumstances, where the proportion of space filled by particulate material is
much less than unity (typically< 10−6), equation (1) may be used.

3. Development of solution

To tackle equation (1) we now assume thatn(v, x) follows the ‘self-preserving’ distribution
which can be expressed in the form

n(v, x) = [N(x)]2

φ(x)
g

(
N(x)v

φ(x)

)
(4)

for suitable spectral functiong(w). This assumption has been used extensively in the papers
quoted earlier and also in various spatially homogeneous time-dependent problems. It is
equivalent to assuming that, as regards itsv dependence, theshapeof n(v, x) is independent
of x, and while this will not hold exactly it would appear to be a reasonable approximation in
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our work where we are interested in calculating certain integrals over the distribution—N(x)

andφ(x), rather than the detailedv dependence ofn(v, x). We note that the relations

N(x) =
∫ ∞

0
n(v, x) dv φ(x) =

∫ ∞

0
vn(v, x) dv (5)

which defineN andφ in terms ofn, imply thatg(w) satisfies the constraints∫ ∞

0
g(w) dw =

∫ ∞

0
wg(w) dw = 1. (6)

To obtain equations determiningN(x) and ϕ(x) we now take the zeroth and first
moments with respect tov of equation (1); that is, we consider the equation

∂2

∂x2

∫ ∞

0
vγ D(v)n(v, x) dv +

∫ ∞

0
vγ

(
∂n

∂t

)
coag

dv = 0. (7)

By letting γ take in turn the values 1 and 0, this will yield a pair of differential equations
for N(x) and ϕ(x). Further, sincen(v, x) is specified on the planex = 0, the values
of N(0) (= N0) and ϕ(0) (= ϕ0) are known and may be used as boundary conditions
for these differential equations. Now, forγ = 1 the second term in equation (7) is zero
(since coagulation conserves the total volume of particulate material) and with the help of
equations (3a) and (4) we thus obtain

d(N1/3φ2/3)/dx = α (constant). (8)

Now, the total flux of particulate matter is given by

J = −
∫ ∞

0
vD(v)(∂n/∂x) dv

= −A

∫ ∞

0
w2/3g(w) dw d(N1/3φ2/3)/dx

= −αA

∫ ∞

0
w2/3g(w) dw (9)

which is, as expected, constant in the steady state. Further, since particles are diffusing in
the positivex direction from the source atx = 0, it follows that J > 0 and hence that
α 6 0. Now, α cannot be negative since equation (8) would then imply thatN1/3φ2/3

becomes negative for some positivex, and hence we must takeα = 0 and

N1/3φ2/3 = constant= N
1/3
0 φ

2/3
0 . (10)

We now letγ = 0 in equation (7) from which it follows that

d2(N4/3ϕ−1/3)

dx2
= νN2 (11)

where

ν = (6π2)1/3
∫ ∞

0

∫ ∞
0 (w1/3+w′1/3)(w−1/3+w′−1/3)g(w)g(w′) dw dw′∫ ∞

0 w−1/3g(w) dw
. (12)

On eliminatingN between equations (10) and (11) we then obtain

d2ϕ−3

dx2
= νN

2/3
0 ϕ

4/3
0 ϕ−4 (13)

combined with the boundary conditionϕ(0) = ϕ0. To obtain a second boundary condition
on ϕ we note that in the infinite time required for particles to diffuse tox = ∞ the mean
particle volumeV = ϕ/N is known to increase to infinity. Since equation (10) gives
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ϕ proportional toV 1/3 it follows that ϕ(∞) = ∞, which is the required second boundary
condition. It is then readily shown that the solution of equation (13) with the above boundary
conditions is

ϕ(X) = (ϕ
1/2
0 + N

1/3
0 ϕ

2/3
0 X)2 (14a)

whereX = (ν/42)1/2x. Correspondingly

N(X) = (N
−1/4
0 + N

1/12
0 ϕ

1/6
0 X)−4. (14b)

We note that asx → ∞, ϕ increases monotonically to∞ while N decreases monotonically
to zero.

4. Discussion

Equations (14) are the main results of this work and should be contrasted with the
corresponding results whenD is a constant, independent ofv. For that situation

φ(x) = φ0 (15a)

N(X) = [σX + N
−1/2
0 ]−2 (15b)

(σ a constant) (Simons 1992), and the difference in behaviour can be readily understood
physically. In the steady stateK = ∫ ∞

0 vD(v)n(v, x) dv is independent ofx as pointed out
earlier, and hence whenD is independent ofv, φ will be independent ofx (see equation (5)).
When, however,D(v) = Av−1/3 we have

K ≈ AV −1/3
∫ ∞

0
vn(v, x) dv (16)

and hence constancy ofK implies thatφ(X) ∝ V 1/3. Now, since the particles coagulate
as they diffuse in the positiveX direction,V (X) will increase withX and this gives rise
to the increase inφ shown in equation (14a). Further, sinceN = φ/V , the increase inV
with X will lead in the constantD situation to the decrease inN given by equation (15b),
while for D ∝ v−1/3 the increase inV with X will be more rapid, since larger particles
will diffuse more slowly, and this accounts for the more rapid decrease ofN with X in this
case as shown in equation (14b).

Finally we consider the numerical value ofν defined in equation (12). Although
its precise value will depend on the functiong(w), the conditions (6) act as powerful
constraints and prevent large variations in the value ofν even when the shape ofg(w)

varies substantially. This point was investigated in detail in the earlier papers quoted above,
taking for g(w) the standard gamma distributiong(w) = Gwq exp(−Hw) which is known
to give a reasonable representation of the particle size spectrum. The constantsG and
H were expressed in terms ofq using equations (6) and the variation in the value of the
expression (12) (albeit with a different value ofγ ) was examined asq varied. We now
apply this approach to the expression (12) with the above-chosen value ofγ = 0, and this
suggests that asq increases from 0 to∞ the variation in the value ofν is not expected
to exceed about 10% of its mean value. We conclude that it is, therefore, reasonable to
estimateν by takingq = ∞, corresponding tog(w) = δ(w − 1); this then yieldsν ≈ 16.
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